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Recently, the deep transfer learning approaches have been widely developed for mechanical fault diag-
nosis issue, which could identify the health state of unlabeled data in the target domain with the help of
knowledge learned from labeled data in the source domain. The tremendous success of these methods is
generally based on the assumption that the label spaces across different domains are identical. However,
the partial transfer scenario is more common for industrial applications, where the label spaces are not
identical. This partial transfer scenario arises a more difficult problem that it is hard to know where to
transfer since the shared label spaces are unavailable. To tackle this challenging problem, a double-layer
attention based adversarial network (DA-GAN) is proposed in this paper. The proposed method sheds a
new angle to deal with the question where to transfer by constructing two attention matrices for domains
and samples. These attention matrices could guide the model to know which parts of data should be con-
centrated or ignored before conducting domain adaptation. Experimental results on both transfer in the
identical machine (TIM) and transfer on different machines (TDM) suggest that the DA-GAN model shows
great superiority on mechanical partial transfer problem.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

With the increase of complexity of manufacturing systems, the
machine fault diagnosis serves an important role to guarantee the
stability of industrial production. With the rapid development and
integration of sensor techniques for modern industry, huge amount
of monitoring data could be collected in engineering scenarios
(Lei et al., 2018). The data-driven approach gradually shows its
superiority on machine fault diagnosis, which is mainly regard to
two aspects: (a) developing advanced signal processing methods
to extract representative features, such as wavelet analysis (Liang
etal., 2019), empirical mode decomposition (EMD) (Flandrin et al.,
2004), singular value decomposition (SVD) (Liu, 2020), and (b)
applying machine learning methods to seek the hidden relation-
ship between the collected data and the health states of machines,
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such as artificial neural network (ANN), support vector machine
(SVM) and recent deep learning approaches (Marquez et al., 2020;
Li et al., 2019a, b). Among these research, deep learning method
has gain great popularity regarding to its capacity of multi-layer
feature learning from mechanical big data.

The key of applying deep learning models for mechanical fault
diagnosis is sufficient labeled training data. However, it is unprac-
tical to collect sufficient labeled fault data in real engineering
scenarios, which can be mainly attributed to two reasons: First,
the degradation of machines is usually a time-consuming process,
which takes much cost to obtain sufficient data and further label
them. Second, some machines may not be allowed to run to fail-
ure because the unexpected fault could lead to the break down
or even catastrophic accidents (Guo et al., 2018). The aforemen-
tioned problems limit the successful development deep learning
diagnostic model in real industrial fields. On the other hand, suffi-
cient mechanical fault label data can be collected in the laboratory
platform with specific working conditions. In this background, one
promising idea is to promote the generalization ability of current
diagnosis model, which could transfer the diagnostic knowledge
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from the source labeled data to the target unlabeled data. For
this issue, the transfer learning methods have been investigated
to expand deep diagnosis model from academic research to engi-
neering scenarios.

Generally, the transfer scenarios could be divided into two
categories (Lei et al., 2020): transfer diagnosis knowledge in the
identical machine (TIM) and transfer diagnosis knowledge across
different machines (TDM). Aimed at these two different transfer
scenarios, many deep transfer-learning based models have been
proposed, which can be classified into three categories according to
the transfer techniques: fine-tune approaches (Zhang et al., 2017;
Caoetal,2018a; Shaoetal., 2018), feature-based approaches (Wen
etal.,2017; Lietal, 2018a; Yang et al.,2019) and adversarial-based
approaches (Li et al., 2018b; Zhang et al., 2020):

Despite the successful development of deep transfer learning
approaches in mechanical diagnosis field, the existing approaches
mainly deal with the problem of how to transfer without consid-
ering the problem of where to transfer. They carry out the transfer
model based on the assumption that the source domain and target
domain have the same label space. However, a more general case
for real engineering applications is that the label spaces between
two domains are different, which can be referred to Y! c Y*. This
scenario can be defined as partial transfer problem, which was ini-
tially proposed in the image processing fields (Cao et al., 2018b).
The partial transferring scenario would produce a more difficult
challenge, in which we even do not know which part of the source
domain label space Y* is shared with the target domain label space
Y. Moreover, the outlier source domain labeled data Y5\Y! will
lead to negative transfer effect to the overall transfer performance.
It is essential to select the effective part from the source domain to
determine where to transfer for the target domain. For the par-
tial transfer problem in mechanical diagnosis field, only a few
researchers made exploratory work based on the adversarial-based
approaches (Li et al., 2020a; Cao et al., 2018c). However, there are
mainly two limitations in the existing methods:

1) The current researchers mainly focus on transferring the
mechanical diagnosis knowledge in one identical machine (Lei
et al., 2020), but the partial transfer problem across different
machines have not been studied comprehensively.

2) To address the problem of where to transfer in the partial
transfer problem, the common approach is to assign different
weights for the corresponding domain discriminators. However,
the effects of samples from different domains are neglected.
The transferability would be severely degraded if the irrela-
tive samples from different domains are fed into the network
indiscriminately (Cao et al., 2018b).

Aiming at the above limitations, a novel double layer attention-
based generative adversarial network (DA-GAN) is proposed in this
paper to expand the diagnosis model for more general engineering
applications. The proposed DA-GAN network consists of three mod-
ules: a feature generator, a source classifier G and a double layer
attention-based discriminator D. The generator F automatically
extract deep features f from both domains and the classifier G could
accurately recognize the different fault types in the trained source
domain. The proposed double layer attention-based discriminator
D deal with the problem of where to transfer in aspects of both
selecting effective domain and samples. Based on these three mod-
ules, the proposed DA-GAN approach is expected to address the
partial transfer learning problem for both TIM and TDM scenarios.
The main contributions are summarized as follows:

1) Different from existing deep transfer diagnosis models where
either the label spaces or the mechanical components to be
transferred across two domains are assumed to be same, the

Computers in Industry 127 (2021) 103399

problem in which both the label space and mechanical compo-
nents are different has been investigated in this paper. A novel
deep-transfer learning model called as double layer attention-
based generative adversarial network (DA-GAN) is proposed to
address the partial transfer learning problem across different
machines. This exploration contributes one of the first attempts
to deal with this practical problem for expanding academic
research to engineering applications.

2) A novel double layer attention mechanism is designed in the
proposed DA-GAN model to better solve the problems of where
to transfer and how to transfer. The proposed double layer atten-
tion mechanism enables the whole adversarial network to know
which discriminators should be concentrated or be neglected
for partial domain adaptation, as well as to decide which part of
the source domain data should be shared for the target domain
during each discriminator’s training process.

3) Comparative experimental studies based on three different
bearing datasets are investigated to evaluate the proposed
method comprehensively, in which totally 42 transfer tasks
across different working conditions, different machines and dif-
ferent types of fault characteristic are all considered.

The remainder of this paper is organized as follows: Section
2 introduces the theoretical background of transfer learning and
adversarial strategy for transfer learning; Section 3 details the pro-
posed method; Section 4 demonstrates the experiment results and
discussions; Section 5 draws the conclusions.

2. Theoretical background
2.1. Background of transfer learning

The transfer learning aims at sharing reusable information
across different scenarios, in which the domain and task are two
basic concepts. The domain is denoted as a pair of D = {X, P(X)},
N
i

including the sampled data X = {x,v} - and its marginal distribu-
tion P(X). The task 7= {Y,P (Y|X)} consists of the label space

Y = {yi}:\; and the objective prediction function f ()= P (Y’ X).

For the mechanical fault diagnosis issue, transfer learning is
applied for promoting the generality of the diagnosis model to cover
the divergence of working conditions, the variation within compo-
nent family type as well as the difference between machine types.
The domain and task are detailed to describe the transfer learning
problem in mechanical diagnosis as follow:

1) The source domain serves as the one which could provide diag-
nosis knowledge to other diagnosis tasks (Pan and Yang, 2009).
The source domain is denoted as: D5 = { X5, Ps (X) }, where the
dataset X° contains sufficient labeled samples and follows a
marginal distribution Ps (X). The source task is denoted as 7 =
{YS, P ( Y5|XS) } where the label space Ys = {1, 2,..., k} con-
tains different k kinds of health state and the diagnosis model
could be obtained as fs(-) =P (YS XS), which could be learned
from the labeled dataset {xf,yf}:\]:s].

2) The target domain serves as the one where the diagnosis knowl-

edge could be reused. The target domain is denoted as: D' =
{Xt, Pt (X)}.If the labels in the target domain could be obtained

as {xfyf}f’; the transferring task from the source domain to
the target domain could be attributed to inductive transfer prob-
lem. On tl}ve other hand, if there are only unlabeled samples
Xt = {xf}i_[] in the target domain, where the latent diagnosis

model f;(-)=P (Yf}X‘) is unavailable. In this case, the trans-
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ferring task could be regard as a transductive transfer problem
(Li et al., 2020Db).

3) In order to guarantee the effective transfer performance from
the source domain to the target domain. The label space of the
source domain is expected to cover or at least equal to that of the
target domain, i.e., Y € Y$ C Y (Cao et al,, 2018c). An intuitive
explanation is that only when the source domain contains sim-
ilar failure modes as the target domain, can it transfer reusable
diagnostic knowledge to the target task.

2.2. Generative adversarial strategy for transfer learning

The GAN (generative adversarial network) based transfer learn-
ing approach develops an adversarial strategy to combine the
domain adaptation and feature learning in one training process. A
simple GAN model consists of two modules: a generator Gy (-) and a
discriminator Gq (-). The generated feature vectors f = Gy (x, Qf) is
usually obtained by a multi-layer mapping function, such as SAE
and CNN, where x is a series of raw sampling points and 6 be
defined as Py = Gy (f, 64), where Py is the probability that f comes
from the source domain rather than the target domain and 6, is the
discriminator parameters.

During the training process, the discriminator adjusts its param-
eters 0y to maximize the probability the Py, thus the generated
feature f, from the target domain can be distinguished from the
generated f; from the source domain. In contrast, the generator is
designed to minimize the Py to confuse the discriminator by gen-
erating fake samples with the similar distribution to the source
domain feature. As the minimax two-player game continues, the
GAN model is optimized to capture domain-invariant features,
which can be formulated as:

min  max (1 )

G Ga  Exsexs[logGq(Fs)] + Ext cxe [log(1 = Gq (F¢))]
3. Proposed method
3.1. Problem formulation

In this paper, a partial transfer learning problem is studied
for fault diagnosis of identical machines and different machines,
where the learned diagnosis knowledge from the source domain
is expected to be transferred to the target domain. Generally, this
study is carried out under the following assumptions:

1) The fault diagnosis problems from two domains are different,
specifically the health state labels from the source domain are
not identical as the target domain, Y* # Y5.

2) For the source domain, there are sufficient labeled data,

S S Ns . . .
{xi \ Y }l.: for supervising learning, but there are only unlabeled

data {xf }1; in the target domain, which can be attributed to the
transductive transfer problem.

3) Since the fault diagnosis transfer across different machines is
also investigated, the data attributes from source and target
domains could be totally different, such as the difference across

sample length and the variance in the sample distribution.

Since the target domain label space is assumed to be the sub-
set of the source domain label space, Y! C Y?, the outlier data from
source domain Cys Y* = {y ‘y € Y5,y ¢ Y } will lead to the unnec-
essary negative transfer. Correspondingly the larger the outlier
label space Cys Yt compared to the Y?, the worse the transferability
across different domains will be. To combat the negative trans-
fer effect caused by CysY! and determine which part should be
shared from the source domain, the DA-GAN model is proposed
to achieve the partial mechanical diagnosis transfer task under the
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given assumptions, and the framework of DA-GAN is illustrated in
Fig. 1.

Since the direct feature learning from raw noisy signal gener-
ally leads to low network training efficiency, data-preprocessing
techniques including resampling, fast Fourier transformation (FFT)
and frequency spectrum rescaling are applied to transform the
raw mechanical vibration data. It should be noticed that data from
source domain and target domain may have different sampling
frequency, which would lead to the misalignment of frequency fea-
tures and further degrade the model transferability. Therefore, the
spectrum rescaling is applied to the source and target spectrums
after fast Fourier transformation, which facilitates the frequency
feature alignment through sharing the same frequency range then
the aligned spectrum images will be fed into the separable CNN
network and deep layer feature generator is trained to extract
domain-invariant features. The extracted feature f; from the source
domain are used to train the label classifier Gy to guarantee the fault
diagnosis functions. At the same time, a two-stage attention-based
discriminator is conducted to deal with the problems of where to
transfer and how to transfer gradually. The details of the feature
generator and attention-based discriminator will be introduced in
section 3.2 and 3.3.

3.2. Aseparable convolutional neural network

In this section, the feature generator Gy and the source label
classifier G, are built based on a separable convolutional neural
network (S-CNN). As a powerful tool to achieve deep feature extrac-
tion and classification, a variety of CNN based models have been
proposed recently, and the model performance is optimized by
changing the networks connecting architecture as well as intro-
ducing the heterogeneous convolution kernels. However, these
stacked deep models are usually designed for huge-scale classi-
fication tasks, such as face recognition with millions of samples.
Considering the characteristics of mechanical monitoring data, we
introduce the S-CNN model with less parameters to replace the
traditional CNN model.

The traditional convolutional neural network learns features
from all three dimensions of the input images, which include
the width, the height and the channels. Therefore, the kernel in
CNN is expected to characterize the spatial relationships and the
cross-channel correlations synchronously. The process of CNN is
demonstrated in Fig. 2 (a), and the general formulation of convolu-
tional kernel is given as:

Conv(W, x); jy = Z

where W is the parameters of the kernel weight matrix to be
trained. The input is denoted as x and the (i, j) denotes the coordi-
nation of the output feature. m, n, k indicate the width, the height
and the channel number of the convolutional kernel respectively.

Different from the traditional CNN model, the introduced
separable convolution neural network characterizes the spatial
relationships and the cross-channel correlations independently,
including two simpler steps: a depthwise convolution and a point-
wise convolution, which is demonstrated in Fig. 2 (b).

In the first step, the convolutional kernel is applied to extract
each channel information of the input data. After the operation
of depthwise convolution, the number of the channels does not
change. The depthwise convolution is expressed as:

M,N,K

W, “X(itm.i 2
monk (m,n,k) * X(i+m,j+n,k) ()

M,N
DW — Conv(W, X);, = Zm Wonm) X jim) (3)

In the second step, a pointwise operation with a1 x 1 convo-
lutional kernel is developed to concatenate the outputs from the
depthwise convolution, which is described in Eq. (4). The point-
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Fig. 1. Framework of proposed DA-GAN model.

wise convolution is applied to extract spatial information, which
would not change the spatial size but change the channel size.

K
PW — Conv(W, X); j, = Zk Wi X j) (4)

Combined with the Eq. (3) and Eq. (4), the overall expression of
the separable convolution can be expressed as:

S - COnV(WD, WP, x)(i!j) = PW - COl‘lV(W, X)(,',j)

[Wp, DW — Conv(W, x); ;] (5)

To quantitively evaluate the difference between the CNN and
the separable CNN, the model parameters are calculated. W, H, C
indicate the width, the height and the channel number of the con-
volutional kernel respectively, and the kernel number is denoted
as K. The ratio of total required parameters is given in Eq. (6). It can
be seen that the separable CNN could effectively reduce the model
complexity since the entire feature extraction is divided into two
simpler steps independently.

Ps_CNN_WXHXK+CXK_ 1 +‘1
Povw 2 WxHxKxC ~ WxH C

(6)

The architecture of proposed feature generatoris shownin Fig. 3,
which mainly consists of the separable convolutional layer, pool-

ing layer and residual connection layer. By replacing the CNN with
separable CNN, the calculation complexity is greatly reduced with-
out sacrificing prediction accuracy. The pooling layer can quickly
decrease the dimension of extracted features, which could reduce
the layers needed in the model and introduce some nonlinear
changes. The residual connection is designed to avoid the gradi-
ent degradation during training and information loss, which could
promote the feature extraction from different levels.

The detailed parameters of proposed feature generator and sub-
domain discriminator are given in Tables 1a 1b. After the operation
of global average pooling P4, a fully connected layer is conducted
to flatten the outputs and to map them into features f, which can
be formulated as:

r=o )5+ 7

where wy indicates the weight matrix and by is the corresponding
bias vector, and x is the input vector from the above pooling layer.

After building the feature generator Gy, the source label classi-
fier could be established subsequently. The classifier Gy is a simple
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Fig. 2. Architecture of CNN and separable CNN.

Table 1a
Parameters of proposed feature generator.
Layer Symbol Operator Parameter
1 Input Input data 3 x 64 x 64
2 SC1 Separable convolution2D Channel number:128,
kernel size:3
3 LR1 LeakyReLU alpha=0.3
4 D1 Dropout p=0.25
5 SC2 Separable convolution2D Channel number:64,
kernel size:3
6 LR2 LeakyReLU alpha=0.3
7 D2 Dropout p=0.25
8 SC3 Separable convolution2D Channel number:32,
kernel size:3
9 LR3 LeakyReLU alpha=0.3
10 D3 Dropout p=0.25
11 R1 Residual connection /
12 FC Fully connection Dense number:128

softmax regression based on the output from the fully connection

layer, which can be expressed as:

e

1 e

e

() s3]
[ (w2) Tf+b}2,:|

[rs]

where wj, is the weight matrix connecting to the ith output neuron,

b;', is the corresponding bias vector, and K denotes the different
kinds of fault modes or health conditions.

3.3. Double layer Attention-based domain discriminator

The double layer attention-based domain discriminator mainly

contains two parts: sub-domain discriminators and double layer

(8) attention matrices. Firstly, the original domain discriminator Gy
is split into a series of sub-domain discriminators G’é, and each

of them is responsible for matching the source and target domain

data corresponded to the source domain label {y* |y* € Y*}.Com-

pared with the traditional domain discriminator, which conducts
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Table 1b
Parameters of proposed sub-domain discriminator.
Layer Symbol Operator Parameter
1 Input Input data 128 x 1
2 C1 Convolution1D Channel number:32,
kernel size:3
3 LR1 LeakyReLU alpha=0.3
4 D1 Dropout p=0.25
5 c2 Convolution1D Channel number:16,
kernel size:3
6 LR2 LeakyReLU alpha=0.3
7 D2 Dropout p=0.25
8 FC1 Fully connection Dense number:512
9 LR3 LeakyReLU alpha=0.3
10 FC2 Fully connection Dense number:128
12 LR4 LeakyReLU alpha=0.3
13 FC3 Fully connection Dense number:2
14 S1 Softmax /
well as less attention is laid on the discriminators responsible for
the outlier label space.
It should be noticed that only assigning domain attentions yy
to discriminators could not guarantee the whole transfer perfor-
SC1-LR1-D1 mance of the diagnosis model. Because there would be no guidance
for these weighted sub-domain discriminators to decide which
part of the samples should be exploited as training data for each
SC2-LR2-D2 domain adaptation process. If samples from different domains are
fed into these discriminators indiscriminately for each sub-domain
SC3-LR3-D3

_ Residual v
‘.. connection ..
Extracted Feature

Fig. 3. Architecture of the proposed feature generator.

the domain adaptation considering the whole distribution of X* and
X!, the sub-domain discriminators could achieve better flexibility
when the label spaces across two domains are different. The neg-
ative transfer effect caused by unbalanced label space CysY! could
be suppressed if the sub-domain discriminators corresponded to
the outlier label space could be correctly identified. Therefore, the
double layer attention mechanism is employed subsequently as the
transfer indicators for sub-domain discriminators. The double layer
attention mechanism is constructed based on two matrices defined
as domain attention matrix M, and sample attention matrix Ms,
which are introduced as follows:

Mg =yl k=1,2,---,Cs

i
51

M = ,i=1,2,-+, Nt

Sk

where the number of label space in the source domain is denoted
as Cs, and the number of total source and target domain samples is
denoted as Ns.

The first layer is designed to determine which sub-domain dis-
criminators should be activated for the current transfer task. Since
the label space of target domain is unknown during the training
process, it is hard to know which label spaces should be shared
across the source domain and the target domain. Correspondingly,
the domain attention matrix My is designed to assign different
weights y; to each sub-domain discriminator. More attention is
expected on those discriminators sharing the same label space, as

adaptation, there would lead to a problem that the sub-domain
discriminator would learn the wrong pattern according to the out-
lier source sample although this sub-discriminator belongs to the
shared label spaces. Therefore, the second layer M is designed to
generate attentions sf( of each sample for sub-domain discrimina-
tors. The sample attention matrix is expected to ensure each data
point could be only aligned to one or several most relevant classes
with high attention value si, while the irrelevant classes with low

st would be filtered out.

The comparisons across transfer without attention mechanism,
transfer with only domain attention mechanism and double-layer
mechanism is demonstrated in Fig. 4. It could be seen that the
key step of successful implement of partial transfer based on dou-
ble layer attention mechanism is to select reasonable metrics to
construct y, and si.‘, which could judge whether the unknown
target domain data share the same label space with the source
domain. As mentioned above, the index MMD has been applied
in many feature-based transfer approaches attributed to its supe-
rior capacity of characterizing distributions similarity. Therefore, in
this paper the index MMD is exploited as the metrics to construct
the double layer attention matrices to assign different weights. The
detailed calculation of MMD is described as follows:

. sup

MMDy (X, Y) = o5

{Ex-p[@ ()] - Eyp [2()]} (10)

Where sup { - } is the supremum of the input aggregate, H indicates
the reproduced kernel Hilbert space (RKHS), and & (x)is a nonlinear
mapping function from the original space to RKHS. The nonlinear
mapping function @ (x) in RKHS is assumed to be rich enough to
obtain an appropriate mode which could maximize the distance
between the source data and the target data. If the value of MMD
is small, it can be concluded that these two samples follow similar
distributions, which indicates that the target data may share the
same fault type as the sub-domain data.
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Fig. 4. Domain adaptation based on discriminators with different attention mechanisms.

Based on the MMD metrics, the first layer attention My = [yy]
can be formulated as:

Sk
&k : mean ZMMD% [Gf (x;") . Gr (xf)]
dk = =
! Sk

dt : mean ZMMD% [Gf (X;k) , Gr (X,[)} (11)

1j/:r1nean (Z?gﬂf")
X [1/mean (S0

where the feature generator based on the separable CNN is denoted
as G (). x]?k refers to the jth source domain data of kth fault type,
and total sample number of source domain in kth class is sj. The
distance dﬁ‘ is calculated to measure the similarity between the dis-
tribution of ith target domain data (source domain data) and the
whole distribution of source domain data from the kth label space.
Correspondingly, the larger distance d{.‘ is, the lower probability that

the data xl? belongs to the label space k will be. After obtaining d!.‘,
the domain attention y; could be derived subsequently by evaluat-
ing the similarity with the label space k from whole target domain.
Note that the probability y?‘ represents a negative correlation with
the MMD distance metrics, the reciprocal operation is applied in
Eq.(11).

Similarly, the second layer attention could be obtained as fol-
lows:

Yk

k
sk 73/‘1?
1 s I
k_ 2 V/d
= / (12)
l stk 73/(1’?
1 s
Yo 1/d

After the calculation of attention matrices My and M, the tradi-
tional optimization function described in Eq. (1) is transformed to

a double-layer weighted loss function as follows:

S [0 [ [ve- G (57 ) ]

+ 320 [log [1- i 6% (s < 11)]] |

min  max

G Gq

Compared with the single domain discriminator in GAN, the pro-
posed weighted loss function enables attention-based adaptation
where the target data is only focused on those relevant sub-domain
discriminators according to the probabilities y¥ and s¥. The pro-
posed double layer attention-based domain discriminator has three
main advantages:

1) The proposed multiple sub-domain discriminators provide a
soft and flexible transfer mechanism compared with the hard
assignment of all source and target data to only one discrimi-
nator. The formulation of multiple discriminators with different
parameters 9’5 could enhance the learning performance in each
sub-domain.

2) The designed domain attention layer enables the model to know
which label spaces are shared and which sub-domain discrim-
inators should be emphasized. The sub-domain discriminators
with different weights could suppress the negative effect from
outlier label space, which provides guidance for the model to
know where to transfer.

3) The designed sample attention layer further explores the prob-
lem of where to transfer in the aspect of better using the source
and target domain samples. The target data with unknown labels
is only aligned to one or several most relevant fault classes with
high value of attentions sf, which could avoid introducing the
redundant information and promote the positive transfer per-
formance for each sub-domain discriminator.

3.4. Overall objective function and training strategy

3.4.1. Optimization objective
The proposed DA-GAN model consists of two optimization
objects:
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1) Minimization of the fault identification error L. on the source
domain data.

2) Minimization of domain adaptation loss L; with respect to the
feature generator Gy and maximization of L; with respect to the
double layer attention-based discriminator Gg;

Object 1: To achieve the effective diagnosis transferability, the
extracted domain-share feature is expected to discriminate differ-
ent mechanical fault types. Since the target label is not available

. . . N .
during training, the source domain dataset D° = {xf,y?}i_1 is
developed to minimize the fault classification error. The classifi-
cation loss could be formulated as:

= > 1[G 6] (14)

fieDs

where Gy is the fault classifier proposed in section 3.1, f; is the
generated features with proposed separable CNN network, and Ly
denotes the cross-entropy loss.

Object 2: The domain adaptation module is accomplished
through a minimax adversarial strategy. During the competitive
training process, the discriminator G is trained to distinguish fea-
tures from source and target domains by maximize the domain
adaptation loss Ly, and at the same time, the generator Gy is
expected to capture the domain-invariant features by minimize the
domain adaptation loss L. The optimization function of domain
adaptation can be rewritten as:

Cs
L= Z ZkaLk Gk SSkas, +Nltz><

k=1 f$ €Dy k=1

1
LK [GK (fi, dy)] = dilog —— o +(1

fiteDt

—d;) x log

where si.‘ indicates the binary variable of k th sub-domain discrim-
inator Gg, ffand fi‘ are extracted features from source domain and
target domain respectively.

Combining all these optimization functions, the overall object
can be expressed as:

L (6f, 06y, 051%_1) =Lc (65, 6y) —a x Lq (6, 64) (16)

where « is the hyperparameter which trade-off these objectives in
the unified optimization problem.

3.4.2. Training strategy

Once the overall optimization function is built, the stochastic
gradient descent (SGD) algorithm could be applied to train the pro-
posed method, in which the parameters (Gf, Oy, Gd) can be trained
as follows:

(@f, 9y) = argminL (9f, 0y, @55@1)

(9;, .. OCS) = argmaxL (Gf, oy, 9"| )
9‘<|

(17)

It should be noticed that the DA-GAN network could not possess
an explicit loss function for model training since the parameters

(Hf, 95) are updated in the opposite direction during the adver-

sarial stage. To achieve the flexible implement of SGD algorithm,
this paper update the gradient of the generator and discrimina-
tor iteratively, in which the parameter 9§ will be frozen during the

training process of parameter 6. Through this circuitous training
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strategy, the parameters ¢y, 0y, 64 can be updated with the standard
backpropagation algorithm, which can be expressed as:

OL¢ oLy
r—n (aef‘ aef>
OL¢
by — 6y —n (865,) (18)

oLy
oo (G

where u represents the learning rate taken by the SGD algo-
rithm during training progresses.

4. Experimental study
4.1. Dataset description

To validate the performance of DA-GAN on partial transfer for
both TIM and TDM scenarios, two rolling bearing datasets are
exploited in this section to build three partial transfer mechanical
diagnosis experiments.

1) Dataset A: The CWRU bearing dataset (Bearings Data Center)

The CWRU bearing dataset is commonly used for mechanical
fault diagnosis, in which the vibration data were measured from

Zyk < Lk Gk Stk Xft, k))

(15)

1
Gk () ’ 1-GK(f)

the motor bearings. There were totally ten kinds of health states in
the monitoring data, which were generally separated as: (1) healthy
(H),(2)inner race fault (IF), (3) outer race fault (OF) and (4) ball fault
(BF). These three faults are further classified according to the fault
size as 0.07 in., 0.14 in. and 0.21 in., respectively. The vibration sig-
nal was sampled with 12.8 kHz and each sample contained 96,678
data points.

2) Dataset B: The Paderborn University bearing dataset (Bearing
DataCenter)

In the Paderborn University bearing dataset, the ball bearings
fault could be divided into artificial faults and real damages caused
by the accelerated lifetime test (ADT). In the artificial fault data,
two kinds of common fault type inner race fault and outer race fault
were recorded. But for the real damages fault data, it also contained
some unusual failures, such as failure caused by plastic deformation
and combined damage modes. The collected bearing fault signals
consist of motor current, vibration, dynamic loading and tempera-
ture. The vibration signal is sampled with 64 kHz and each sample
contained 25,600 data points.

3) Dataset C: The XJTU-SY bearing dataset (XJTU-SY Bearing
Datasets)

Different from datasets A and B collecting data with obvious
fault characteristics, XJTU-SY bearing dataset collects the full life
cycle bearing information with different degradation modes as
inner fault, outer fault and combined fault. Therefore, the dataset
C not only contains similar obvious fault characteristics data as
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datasets A and B, but also collects early-stage life cycle data with
weak fault characteristics. The vibration signal is sampled with 25.6
kHz and each sample contained 32,768 points.

The three datasets details are summarized in Table 2, and three
experimental cases are designed to comprehensively evaluate the
proposed method under different degrees of domain shifts.

4.2. Compared approaches

In this paper, different strategies including no transfer, feature-
based transfer and adversarial-based transfer are implemented on
the partial transfer learning problem for comparison study. To
evaluate the proposed method fairly and comprehensively, all the
following approaches would share the similar network (same struc-
ture for feature generator) and hyperparameters with DA-GAN
model.

(1) Baseline

First, a baseline method is applied for comparison to show the
transferring performance without transfer. The baseline model has
no special designed structures for domain adaptation and partial
transfer learning. The feature extractor and classifier are trained
with the labeled source domain data and would directly predict
the unlabeled target domain data.

(2) Feature-based model: Domain adaptation based on MMD

In the feature-based domain adaption method, the metric MMD
is employed as the optimization item, training the whole network
to extract domain-invariant features and to achieve better transfer-
ability. In this section, the popular methods in the existing studies
multi-kernel MMD (MK-MMD) (Che et al., 2020) and multi-layer
MMD (ML-MMD) (Yang et al., 2019) are applied.

(3) Adversarial-based model: Domain adaptation based on GAN

In the adversarial-based model, two kinds of GAN model,
deep adversarial CNN (DACNN) (Han et al., 2019) and selective
adversarial network (SAN) (Cao et al., 2018b), are employed for
comparisons. In the DACNN model, the sub-domain discriminators
and double-attention layer are removed, the domain adaptation is
implemented by one discriminator. In the SAN model, the multi-
ple sub-domain discriminators are also constructed but only the
domain attention is calculated based on pseudo-label from the tar-
get domain.

4.3. Brief introduction of designed experimental cases

In this sub-section, a brief introduction of designed transfer sce-
nario cases is provided. The comparisons of three experimental
cases are illustrated in Fig. 5. It can be seen that the challenges
among three partial transfer learning scenarios are increased pro-
gressively. In Case I, the model evaluation is focused on transferring
diagnosis knowledge under different working conditions, in which
the target domain data have different label space compared with
source domain data. In Case II, the model evaluation is focused on
the partial transferring performance across different machines, also
known as TDM issues which have not been investigated compre-
hensively. In Case III, the partial transfer task further concerns the
effect of different fault characteristics, in which the model trained
with obvious fault data is expected to transfer diagnosis knowledge
on weak fault characteristics data.
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4.4. Case study I: partial transfer problem for TIM scenario

4.4.1. Experiment description

In this sub-section, the partial transfer learning problem is stud-
ied for TIM scenario. Different fault diagnosis knowledge transfer
tasks are designed to make comprehensive comparisons between
proposed DA-GAN and other deep transfer approaches. The detailed
information of the concerned transfer tasks is given in Table 3,
which are randomly selected from dataset A and B.

For the transfer task TIM,, 2000 source-domain and target
domain samples with 12,800 sample length at each health state
are employed for model training. For the transfer task TIMjg, the
sample number is 1000 and the sample length turns to 64,000 to
match the sampling frequency. It should be noticed that the target
domain data are unlabeled, therefore samples are shuffled to guar-
antee that the labeled source domain samples and the unlabeled
target domain samples from the same label space would not be
aligned before domain adaptation. Afterwards, totally 2000 sam-
ples from the target domain are tested, and the predicted result of
each task is averaged 10 trials to reduce the randomness. The train-
ing iterations of each model is set as 500 to guarantee a convergent
result, the learning rate is set as 0.01, and the batch size is set as
100. For DA-GAN, the trade-off parameter « is set as 0.5. Both mean
value and standard deviations of predicted results are provided to
reduce the effect of randomness.

4.4.2. Experimental results and performance comparisons

The TIM fault diagnosis results for dataset A are presented in
Table 4. It can be observed that all the compared deep transfer
approaches could obtain excellent transfer performance in the non-
partial transfer problem (Task C4_1). However, when dealing with
the partial transfer problems, where the target samples have large
biased label space compared with the source domain, the trans-
fer performance of these approaches are degraded and even the
negative transfer occur, such as C4_g, C4_g and C4_g. The confu-
sion matrices of testing accuracy on these partial transfer tasks are
illustrated in Fig. 5. Based on the confusion matrix, it can be found
that the testing accuracies of all the feature-based approaches (MK-
MMD & ML-MMD) and adversarial-based approaches (GAN & SAN)
reduce greatly when only the limited label spaces exist in the test-
ing data. Especially in the extreme case C4_g, Where one health
state, inner race fault with 0.14 in. fault size, is included in the tar-
get domain data, the SAN model could only reach 44.9 % accuracy
on testing data, which is even much lower than the accuracy of
baseline model without transfer.

To further investigate the severe degradation of transfer per-
formance on the SAN approach, the domain attention matrices of
10 transfer tasks constructed by SAN and DA-GAN are illustrate in
Fig. 6. The true domain attention is given based on the latent target
domain labels, and it can be seen the domain attention for task-9
should be concentrated on label-3. However, the SAN attention on
task-9 has been mainly scattered to label-2, label-3 and label-4, in
which samples from irrelevant label spaces produce negative effect
on domain adaptation process. Since the domain attention in the
SAN approach is built on the pseudo label trained from source data,
the large bias between two domains could lead to a wrong pseudo
label distributions and interference the transferability correspond-
ingly.

On the other hand, the proposed DA-GAN model could construct
the domain attention correctly compared with SAN. Benefit from
better representation of domain similarity based on MMD-metrics
instead of depending on pseudo labels, DA-GAN model shows great
superiority on partial transfer learning problems, especially in the
cases where the source domain and target domain has large-biased
label space. It should be noticed in the engineering machinery diag-
nosis scenario, the unlabeled testing data for one machine usually
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Table 2
The detailed information of three experimental datasets.
Name Dataset Specification
Bearing type Ball bearing, SKF 6205—2RS JEM
Working condition Load : OHp / 1Hp / 2Hp / 3Hp Speed: 1720 rpm to 1797 rpm
Dataset A: Health state label & 1 Health
CWRU dataset Health state specification 2 Inner race fault with 0.07 in. fault
3 size
4 Inner race fault with 0.14 in. fault
5 size
6 Inner race fault with 0.21 in. fault
7 size
8 Ball fault with 0.07 in. fault size
9 Ball fault with 0.14 in. fault size
10 Ball fault with 0.21 in. fault size
Outer race fault with 0.07 in. fault
size
Outer race fault with 0.14 in. fault
size
Outer race fault with 0.21 in. fault
size
Fault mode Artificial damage
Data type Fault data sampled with 12,800 Hz
Bearing type Ball bearing, SKF 6203
Working condition Load :400 N / 1000N Speed: 900 rpm/1500 rpm Torque: 0.1 Nm /0.7 Nm
Dataset B: Health state label & 1a Inner race fault (Artificial damage)
Paderborn dataset Health state specification 2a Health
3a Outer race fault (Artificial damage)
1b Inner race fault (Fatigue pitting)
2b Health
3b Outer race fault (Fatigue pitting)
4b Inner race fault + Outer race
5b fault(Fatigue pitting)
Inner race fault + Outer race fault
(Plastic deformations)
Fault mode Artificial damage & Real damage by accelerated life test
Data type Fault data sampled with 64,000 Hz
Bearing type Rolling bearing, LDK UER204
Working condition Load : TOkN /11 kN /12 kN Speed: 2100 rpm/2250 rpm / 2400 rpm
Dataset C:
XJTU dataset Health state label. & ' 1c Inner race fault
Health state specification 2c Outer race fault
3c Inner race fault + Outer race fault
4c Health
Fault mode Real damage by accelerated life test
Data type Full life cycle running data
sampled with 25,600 Hz
Table 3
Transfer tasks for experimental case I.
TIM for dataset A: CWRU TIM for dataset B: Paderborn bearing dataset
Task Transfer scenario Target Classes Task Transfer scenario Target Classes
Ca_1 1797 rpm—1730 rpm Non-Partial Cp_1 1000 N —-400 N Non-Partial
Caa 1797 rpm—1730 rpm 1,3,5,7,9 Cp_2 1000 N —-400 N 1a,3a
Cas 1797 rpm—>1730 rpm 246,810 Cp 3 1000 N 400 N 2a,3a
Caa 1797 rpm— 1730 rpm 1,2,3,8 Cp_a 1000 N —400 N 3a
Ca_s 1797 rpm—1730 rpm 2,58 Cp_s 1000 N —-400 N Non-Partial
Cas 1797 rpm—1730 rpm 3,79 Cp6 1000 N —400 N 1b,3b,5b
Ca7 1797 rpm—1730 rpm 1,2 Cp_7 1000 N —400 N 2b,4b,5b
Cas 1797 rpm— 1730 rpm 3,5 Cpg 1000 N —-400 N 1b,5b
Cag 1797 rpm—1730 rpm 3 Cpg 1000 N —-400 N 3b,4b
Ca10 1797 rpm—>1730 rpm 2 Cg_10 1000 N —400 N 3b
Table 4
Means and standard deviations of the testing accuracies on TIM for dataset A.
Task Name Baseline MK-MMD ML-MMD GAN SAN DA-GAN
Ca1 96.4(+1.5) 98.5(+1.1) 95.5(+0.3) 99.3(+0.2) 97.2(+0.6) 99.7(+0.1)
Caz 93.7(+1.7) 95.4(+1.3) 96.2(+0.2) 97.4(+0.4) 91.5(+0.7) 99.6(+0.2)
Cas 99.6(+0.1) 98.2(+0.9) 98.2(+0.2) 99.6(+0.1) 98.4(+0.1) 99.9(+0.1)
Ca_a 94.6(+0.1) 96.7(+1.5) 93.6(+0.4) 98.0(+0.4) 86.2(+1.1) 99.4(+0.1)
Cas 99.3(£0.1) 99.8(+0.2) 99.8(+0.1) 99.4(+0.2) 99.9(+0.1) 99.9(+0.1)
Cas 88.1(+0.3) 67.5(+2.8) 74.5(£0.7) 89.4(+0.6) 83.6(+0.5) 96.2(+0.4)
Ca7 99.8(+0.1) 99.8(+0.1) 99.8(+0.1) 99.8(+0.1) 99.9(+0.1) 97.3(+0.4)
Cas 81.9(+2.9) 73.4(+3.0) 90.6(+0.4) 94.8(+0.6) 74.3(£1.2) 99.8(+0.1)
Cao 66.9(+2.9) 78.1(£3.1) 78.8(£0.7) 83.7(+1.0) 44.9(+1.5) 91.4(+1.3)
Ca10 99.7(+0.1) 99.9(+0.2) 99.7(+0.2) 99.8(+0.1) 99.9(+0.1) 99.6(+0.1)
Average 92.0 90.7 92.6 96.1 87.6 98.3

10
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has limited categories of faults or only one certain health state com-
pared with multi-labeled training data. Therefore, the proposed
DA-GAN is well suited for this type of partial transfer problem.

The TIM fault diagnosis results for dataset B are presented in
Table 5. Similar as Table 4, all the deep transfer approaches could
reach high prediction accuracy in non-partial scenario. Therefore,
the main comparison is focused on the partial transfer problems.
It can be observed that the transferability of these compared
approaches has been degraded dramatically for task Cg_g and Cg_1.
One main reason is that the outlier label space would lead to neg-
ative transfer when conducting the domain adaptation process. To
compare the negative effect of outlier source data within different
approaches, in Fig. 7 the confusion matrices of testing accuracy on
partial transfer tasks Cg_g and Cg_1¢ are given.

It can be observed thatin the task of Cz_g, the ML-MMD, GAN and
SAN approaches have categorized target data of label-3 and label-
4 into one class, which greatly affect the transferability and even
produce negative transfer. In the task of Cg_1¢, the negative effect
on the transferability from outlier source data is even more obvi-
ous, the ML-MMD approach incorrectly classifies more than 80 % of
the target data from label-3 into label-4. A possible reason causing
negative transfer is that these transfer learning models may learn
the common feature mode from label-3 and label-4 to adapt source
and target domains but fail to capture the discriminative features
between them. Since the label-4 called as inner fault and outer fault
includes the identical fault type as in the label-3 called as outer
fault, it could easily lead to the negative transfer when conducting
domain adaptation. Especially when there is only one type of data
in the target domain but there is another type source domain data
including identical fault modes as the target domain data, this out-
lier data would affect the domain-shared feature learning process
and lead to unexpected negative transfer correspondingly.

While in the proposed DA-GAN model, this negative transfer
effect could be well suppressed by applying the double layer atten-
tion mechanism. The domain and sample attention matrices of
transfer tasks Cg_g and Cg_19 are showed in Fig. 8. For task Cg_g,
the actual label spaces in the target domain are label-3 (Outer fault)
and label-4 (Inner fault and outer fault). It could be observed that
these two kinds of labels have been lied on more weights com-
pared with other labels in the domain attention matrix. What’s
more, in the sample attention matrix, the weight of each sample
has been arranged correctly according to its latent fault class. For
instance, the target samples belonged to label-4 have more weights
on the fourth row of the attention matrix, which means that the
sub-domain of discriminator label-4 would pay more attention to

Case ll
TDM partial transfer
with similar faults

Case |
TIM partial transfer
Same bearing type
Same machine
Same fault characteristics
Same damage mode
Different working conditions

e o o o o
e o o o o

Fig. 5. The comparisons of designed experimental cases.

Confusion matrices of testing accuracy on the task C4_g based on different approaches.
Confusion matrices of testing accuracy on the task C4_g based on different approaches.
Confusion matrices of testing accuracy on the task C4_9 based on different approaches.

Similar bearing type

Similar characteristics
Different machines
Different damage mode
Different working conditions
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training with these samples compared with other sub-domain dis-
criminators. For task Cg_1¢ where the target data has only one fault
class of label-3, the domain attention matrix and sample atten-
tion matrix both successfully distribute more weights on label-3 to
conduct domain adaptation process.

According to the above comparative experimental results for
partial transfer tasks Cg, it could be further concluded that DA-
GAN model could effectively suppress the negative transfer effect
cause by the outlier data. Even in the case where the source outlier
data share the identical feature mode as the target data (e.g. outlier
label “inner fault and outer fault” in the source domain and label
“outer fault” in the target domain), the designed double layer atten-
tion mechanism could still guide the sub-domain discriminators to
know where to transfer and to learn more discriminative features
for positive transfer.

4.5. Case study II: Partial transfer problem for TDM scenario with
similar fault characteristic

4.5.1. Experiment description

In this sub-section, the partial transfer learning problem is
explored for TDM scenario with similar fault characteristic. Two
types of TDM transfer tasks are designed to evaluate the transfer
performance comparatively, which are listed in Table 6. In the first
type of TDM transfer tasks, the source data and target data have
the same fault mode called as artificial fault (electric discharge
machining, EDM), but the data from two domains are collected
from different machines with different sensors. In the second type
of TDM transfer tasks, the fault mode, sensor location and testing
machine of these two domains are all different, which could further
explore the transferability of these approaches under large domain
variance. The detailed parameters used for training the TDM model
is given in Table 7.

4.5.2. Experimental results and performance comparisons

The TDM fault diagnosis knowledge transfer performance of
different approaches is given in Table 8, similar as case I, each
transfer task is averaged 10 trials to reduce randomness and to
provide mean value and standard deviation of the testing accura-
cies.

From the comparative results shown in Table 8, it could be
observed that the feature-based methods (MK-MMD and ML-
MMD) and adversarial-based methods (GAN and SAN) could
promote positive transfer compared with baseline method for TDM
scenario, but the transferability is much lower than these model’s

Case lll
TDM partial transfer
with different faults

Different bearing types
Different fault characteristics
Different damage mode
Different machines

Different working conditions
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Fig. 5. (Continued)

the proposed DA-GAN model provides significant improvement on
the positive transfer among these TDM tasks, which achieves the
average testing accuracy of 87.9 %.

performance on TIM scenario. More seriously, in some partial trans-
fer tasks as C4_p_4, C4_p_s5 and Cg_a_4, the feature-based methods
and SAN model even fail to transfer diagnosis knowledge. While
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Table 5

Means and standard deviations of the testing accuracies on TIM for dataset B.
Task Name Baseline MK-MMD ML-MMD GAN SAN DA-GAN
Cp_1 89.9(+1.3) 97.8(+0.6) 95.7(+0.7) 98.8(+0.1) 98.9(+0.4) 99.9(+0.1)
Cp_2 81.0(+3.2) 99.4(+0.3) 97.7(+0.5) 89.5(+1.7) 86.1(+1.4) 99.9(+0.1)
Cp3 98.8(+0.1) 99.3(+0.4) 98.6(+0.4) 93.3(+1.4) 95.9(+1.1) 99.5(+0.1)
Cp_4 99.3(+0.4) 97.7(+0.6) 99.9(+0.1) 94.9(+1.0) 99.9(+0.1) 98.4(+0.4)
Cps 92.5(+1.1) 81.7(+1.7) 99.7(+0.2) 99.9(+0.1) 87.6(+3.8) 99.9(+0.1)
Cp g 84.8(+1.9) 76.5(+1.6) 78.5(+1.4) 87.9(+3.1) 91.4(£2.2) 99.6(+0.1)
Cp7 97.7(+1.2) 99.7(+0.2) 99.8(+0.1) 89.6(+2.8) 99.5(+0.6) 99.8(+0.1)
Cp_s 97.0(+1.6) 99.8(+0.2) 99.7(+0.1) 78.2(+2.9) 87.2(+2.4) 99.8(+0.1)
Cpg 77.8(+2.0) 74.5(+1.7) 58.3(%+1.5) 59.0(+3.2) 40.5(+3.5) 98.8(+0.2)
Cg-10 62.8(+2.8) 83.9(+1.6) 14.5(+1.0) 84.1(+2.7) 51.5(+5.8) 99.7(+0.1)
Average 88.1 91.0 84.2 87.5 83.8 99.5

Table 6

Transfer tasks for experimental case II.

TDM for dataset A and dataset B

Task Transfer scenario Target Classes
Ca_p_1 CWRU artificial damage—Paderborn artificial damage 1a,2a,3a
Cap_2 CWRU artificial damage— Paderborn artificial damage 1a,2a
Ca-B-3 CWRU artificial damage—Paderborn artificial damage 13,3a
Ca_p_4 CWRU artificial damage—Paderborn artificial damage 2a
Ca_p_s CWRU artificial damage—Paderborn artificial damage 3a
Cp_a1 Paderborn natural degradation—CWRU artificial damage 1,2,3
Cg_a_> Paderborn natural degradation—CWRU artificial damage 1,2
Cp_a_3 Paderborn natural degradation—CWRU artificial damage 13
Cp_a_a Paderborn natural degradation—CWRU artificial damage 2
Cp_as Paderborn natural degradation—CWRU artificial damage 3
Table 7
Parameters used for models in experimental case II.
Parameter Value Parameter Value
Source domain sample number 2000 Training iterations 500
Target domain sample number 2000 Batch size 100
Source domain sample length 1280 Learning rate 0.001
Target domain sample length 6400 Tuning parameters o« 0.5

To further investigate the effectiveness of proposed model, the
confusion matrix of each model on task C4_g_7 in Fig. 9. From
the comparative results shown in Fig. 9, all the transfer learning
approaches could promote the positive transfer on the label#1, but
the transferability on the label-2 and label-3 is far poor. These unex-
pected negative transfer results could be mainly attributed to two
reasons: incorrect adaptation and outlier data interference:

1) Incorrect adaptation: Since the transfer task belongs to TDM sce-
nario, there has a large distribution shift across the source and
target domains. It is possible that the source domain data and
target domain data belong to the different classes, but still share
some common feature distributions. In such case, the transfer
learning model tends to learn incorrect domain-invariant fea-

tures and fail for diagnosis knowledge transferring.

13
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Confusion matrices of testing accuracy on the task Cz_19 based on different approaches.

Table 8

Means and standard deviations of the testing accuracies on case II.
Task Name Baseline MK-MMD ML-MMD GAN SAN DA-GAN
Ca_g-1 17.7(£2.7) 51.0(£3.3) 60.0(£0.7) 64.6(+2.8) 49.5(+£3.2) 98.1(+1.1)
Cag_2 17.8(+3.5) 49.1(+2.9) 28.9(+0.7) 50.4(£2.9) 50.2(+2.8) 83.9(+3.3)
Ca-B-3 17.5(+2.0) 49.3(+3.3) 49.8(+0.7) 49.6(+3.1) 49.5(+0.3) 90.4(+2.3)
Cap-a / 7.9(£2.7) 11.9(£0.5) 96.4(+1.8) / 98.4(+1.1)
Ca_g_s / 34.6(+3.2) 70.8(£0.7) 99.8(+0.1) / 99.4(+0.4)
Cp_a-1 16.4(+2.7) 40.4(+3.9) 44.5(+0.7) 41.7(+3.4) 50.3(+3.9) 81.3(+3.0)
Cp a2 15.2(£2.8) 43.3(£2.7) 17.3(£0.6) 49.8(+2.5) 72.1(£3.0) 88.0(+1.5)
Cp_na_3 27.9(£3.3) 36.2(+3.8) 37.8(+0.7) 18.7(+£2.8) 61.6(+2.2) 61.0(+1.2)
Cp_n_a / / / 43.5(+3.4) / 88.7(+2.1)
Cp_a-s 27.1(£3.0) 27.8 (+£2.6) 86.5(+0.5) 63.6(+2.7) 63.3(+3.7) 90.4(+1.5)
Average 13.9 339 40.7 57.8 39.7 87.9

2) Outlier data interference: The outlier data in the source domain
may also contain similar feature mode as the target data, which
would lead to the extra confusion for domain adaptation pro-
cess. The transferability would be severely reduced under the
negative effect of outlier data.
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To visually understand how these factors influence the perfor-
mance of transfer models, the FFT spectrum distributions of the
source data and target data for task C4_p_q are given in Fig. 10.
It can be seen that the source data from label-1 has some com-
mon distribution model as the target data from label-2. It is also
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obvious that the outlier data from label-4 has some similar dis-
tributions as the target data from label-2 and label-3. This could
well explain the transferability degradation of compared models
in Fig. 9. For instance, the ML-MMD method has recognized target
data from label-2 as label-1, which could be attributed to the incor-

Fig. 9. Confusion matrices of testing accuracy on Cs_g_1 based on different approaches.

rect adaptation. The MK-MMD method categorizes the target data
from label-2 and label-3 into label#4, which is mainly influenced
by the effect of outlier data.

In the proposed DA-GAN model, these two unexpected prob-
lems could be well suppressed by applying double layer attention
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Fig. 11. Domain and sample attention matrices constructed by DA-GAN for C4_p_1.

mechanism, which is illustrated in Fig. 11. It can be seen that the
domain attention matrix could guide the model to activate correct
sub-domain discriminators label-1, label-2 and label-3 for subse-
quent adaptation process. This could alleviate the interference from
outlier data label space. Further the sample attention matrix is
constructed to utilize data discriminately for each sub-domain dis-
criminators. It can be observed that each sample would be assigned
more probability on its corresponding label, this could promote the
correct domain alignment across different domain data and greatly
reduce the negative effect caused by wrong adaptation.

4.6. Case study III: Partial transfer problem for TDM scenario with
different fault characteristics

4.6.1. Experiment description

In this sub-section, a more challenged partial transfer scenario,
where the data from source domain and target domain are not only
from different machines, but also have different fault characteris-
tics, such as obvious bearing fault through artificial damage and
weak bearing fault from the early-stage & middle-stage of nature
degradation.

Totally 12 transfer tasks with different fault characteristics are
designed in case III, including different types of fault characteristic
transfer problems: transferring diagnosis knowledge from artifi-
cial damage fault data to early-stage & middle stage fault data
(Task C4_c_1 to C4_c_g) and transferring diagnosis knowledge from
nature degraded fault data to early-stage & middle stage fault data
(Task Cg_c_1 to Cg_c_g). The detailed transfer tasks specification
and parameters setting are listed in Tables 9 and 10respectively.
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4.6.2. Experimental results and performance comparisons

The comparative results of transferring diagnosis knowledge
across different machines with different degrees of fault character-
istics is given in Table 11. Each transfer task is averaged 10 trials to
reduce the randomness and to provide the mean value and standard
deviation of the testing accuracies.

From Table 11 it can be seen that the proposed DA-GAN could
effectively improve the model accuracy compared with other
approaches in the partial transfer scenarios with different fault
characteristics. For example, in the transfer task C4_c_g, where the
labelled training data are from CWRU dataset with obvious artifi-
cial fault characteristics and testing unlabeled data are from XJTU
dataset with early fault characteristics, the proposed method (DA-
GAN with 89.4 % accuracy) shows great superiority in promoting
positive transfer compared with other GAN-based method (GAN
with 71.4 % accuracy & SAN with 75.2 % accuracy). What's more, the
feature-based model (MK-MMD with 39.6 % accuracy) even leads
to unexpected negative transfer, which degenerate the diagnosis
model trained from source data solely without transfer.

The classification results on task Cg_c_, based on different
approaches are given in Fig. 12. It can be seen that the feature-based
transfer models (MK-MMD and ML-MMD) classify all the inner fault
and outer fault data as normal data wrongly, which lead to unex-
pected negative transfer and degenerate the base model. Compared
with feature-based models, adversarial-based models (GAN and
SAN) could effectively transfer diagnosis knowledge about classi-
fying fault and health data, however, they could not discriminate
the difference between inner fault and outer fault data since all
fault data are classified as inner fault. The proposed DA-GAN model
could effectively solve the issue through the double-layer atten-
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Table 9
Transfer tasks for experimental case III.
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TDM from dataset A to dataset C, TDM from dataset B to dataset C

Task Transfer scenario Target Classes
Cac-1 CWRU artificial damage— XJTU-SY middle-stage fault 1c¢,2¢,3¢
Ca_c_2 CWRU artificial damage— XJTU-SY middle -stage fault 1c,2¢c
Ca_c_3 CWRU artificial damage— XJTU-SY middle -stage fault 1c,3c
Cac-a CWRU artificial damage— XJTU-SY early-stage fault 1¢,2¢,3¢
Cac-s CWRU artificial damage— XJTU-SY early-stage fault 1c¢,2c
Cac-6 CWRU artificial damage— XJTU-SY early-stage fault 1¢,3¢
Cpc1 Paderborn natural degradation— XJTU-SY middle-stage fault 1c¢,2¢,3¢,4c
Cg_c_2 Paderborn natural degradation— XJTU-SY middle-stage fault 1c,3c,4c
Cg_c_3 Paderborn natural degradation— XJTU-SY middle-stage fault 1c,3c
Cpc.a Paderborn natural degradation— XJTU-SY early-stage fault 1c¢,2¢,3¢,4c
Cgc-s Paderborn natural degradation— XJTU-SY early-stage fault 1¢,3c,4c
Cg_c_6 Paderborn natural degradation— XJTU-SY early-stage fault 1c,3¢c

Table 10

Parameters used for models in experimental case III.
Parameter Value Parameter Value
Source domain sample number 2000 Training iterations 500
Target domain sample number 2000 Batch size 100
Source domain sample length 1280 & 6400 Learning rate 0.001
Target domain sample length 2560 Tuning parameters « 0.5

Table 11

Means and standard deviations of the testing accuracies on case III
Task Name Baseline MK-MMD ML-MMD GAN SAN DA-GAN
Caca 52.0(+7.8) 50.8(+4.4) 65.2(+3.5) 83.8(+6.2) 79.0(£3.9) 93.6(+3.2)
Cac2 34.2(+6.7) 55.4(+3.5) 70.0(£2.9) 81.6(+4.3) 93.2(£2.7) 99.0(+0.6)
Cacs 50.4(+6.7) 68.0(+3.4) 98.4(+0.7) 80.2(+3.8) 84.2(+4.4) 93.4(+1.8)
Caca 42.2(+6.4) 51.0(%3.9) 60.0(+3.6) 61.8(+6.2) 67.6(+6.6) 77.2(+£5.4)
Cac-s 28.6(+6.7) 37.2(£3.4) 64.4(+2.9) 68.0(+6.4) 84.4(+2.1) 94.0(+2.7)
Cacs 59.4(4+9.0) 39.6(+3.3) 75.0(+2.4) 71.4(£8.6) 75.2(£6.9) 89.4(+5.1)
Cpc 1 28.4(+4.8) 51.0(+4.1) 47.8(£3.3) 74.2(+4.4) 71.2(£5.7) 90.0(+3.7)
Cp_c—2 66.0(+5.2) 52.0(+4.7) 52.0(+3.2) 72.2(+4.7) 70.0(+4.2) 94.0(+3.2)
Cpc 3 / 32.6(+3.5) / 66.6(+5.9) 57.6(+4.4) 89.0(+2.9)
Cpca 33.8(%5.5) 40.6(+3.6) 25.4(+2.9) 72.6(£4.5) 65.6(+6.9) 76.6(+£5.4)
Cpcs 68.8(+6.0) 50.0(+4.3) 48.8(+3.2) 79.4(£6.5) 98.0(+1.8) 98.8(+1.0)
Cgc6 29.6(+6.1) 37.8(£3.9) 48.6(+3.2) 71.4(+6.8) 51.4(+5.8) 86.2(+6.1)
Average 411 47.2 54.6 73.6 74.8 90.1

tion mechanism. The attention matrices based on DA-GAN for task
Cg_c_» is illustrated as Fig. 13. It can be seen that all samples will
be guided to conduct domain adaptation adaptively according to
the double layer attention matrices. Especially for testing data with
weak fault characteristics (such as inner fault and outer fault during
early-stage degradation), the sample weight matrix could promote
the positive transfer by assigning discriminative weights to these
confusing data, which could effectively improve the transferabil-
ity in the scenario where source domain and target domain have
different fault characteristics.

5. Conclusions

In this paper, a novel adversarial-based approach is proposed to
address the partial transfer problem for mechanical fault diagno-
sis. The designed double layer attention mechanism could promote
the positive transfer and alleviate the negative effect of irrelevant
source data. The first domain attention is applied to decide which
label space in the target domain should be shared for the current
transfer task, and the second sample attention is implemented to
know which samples should be focused on for each sub-domain
discriminator.

We believe that the proposed DA-GAN model could shed a new
angle for solving mechanical fault diagnosis transfer learning prob-
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lems, which enables the network to know where to transfer instead
of conducting domain adaptation indiscriminately. Three experi-
mental case studies have been investigated and the comparative
results validate that the proposed method shows great superiority
on promoting positive transfer under different degrees of domain
shifts, such as different working conditions, different machines and
different fault characteristics. Especially in the extreme cases where
the target label space has large-biased data compared with source
domain, the proposed method could effectively alleviate the nega-
tive transfer caused by the outlier source data. Consider that above
extreme cases, in which only one fault occurs in a certain machine,
are more common in practice, the proposed DA-GAN could pro-
mote the extension of diagnosis model from academic research to
engineering scenarios.

Another possible case may also occur in practice, where some
additional faults not belonging to the source domain classes happen
in the testing machine. This problem called as open set domain
adaptation will be explored in the future research.
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